Course Specifications

Program(s) on which the course is given : P., P.&las., P.&G.,

P.&Ch.

Major or Minor element of programs : major -major -

minor- minor.

Department offering the program : P., P., P.&G.,

P.&Ch.

Department offering the course Physics

Academic year / Level 1

Date of specification approval: 2012

A- Basic Information

Title:		Code: P122
	Thermodynamics	
Credit Hours:	3 h	Lecture: 3h
Tutorial: 00		Total: 3h
	Practicals:00	

B- Professional Information

- 1 Overall Aims of Course at the end of this course the student would be able to understand the thermodynamic relations, laws and entropy
- 2 Intended Learning Outcomes of Course (ILOs)
- a-Knowledge and Understanding:

student would be able to

a1- have the knowledge to the main

thermodynamic systems and process

a2- understanding the thermodynamic

concepts and relations

a3- understand the transfer of heat to work

b-Intellectual Skills

student should be able to

b1- Apply the thermodynamic treatment for different processes

b2 deal with the different thermodynamic

processes in heat engine, refrigerators and power plant

b3- be implicated with simple

thermodynamic analysis of some processes

c- Professional and Practical Skills

student would be able to

- c1- develop the experimental skills which are related to this field
- c2- solve simple thermodynamic problems
- d- General and Transferable Skills

The student should be able to

- d1- apply the thermodynamic principles with other people
- **d2- Improve his knowledge about studying the statistical thermodynamics**

3- Contents

Topic	No. of hours	Lectu re	Tutor ial/Pr actica
Definitions and concepts	6	2	
First law and applications	6	2	
Carnot's cycle and theorem	6	2	
Heat engine and refrigerator	3	1	
Second law and examples	6	2	
entropy	6	2	
Third law and application	3	1	

4—Teaching and Learning Methods

4.1-lectures

4.2 -discussions

5- Student Assessment Methods

- 5.1 sheet exams ... to assess the theoretical knowledge
- 5.2 discussions to assess student scientific thinking
- 5.3 research projects To assess the overall outcome

Assessment Schedule

Assessment	sheet exam	Week 8&16 (mid
1		&final term).
Assessment	Practical	Week 8&16 (mid
2	exams	&final term).
Assessment	oral exams	every week
3		
Assessment	Research	Final Week
4	projects	

Weighting of Assessments

Mid-Term Examination 20 %
Final-term Examination 60 %
Oral Examination.
20 %
Total 100

6- List of References

- **6.1- Course Notes**
- **6.2- Essential Books (Text Books)**
- a first course in thermodynamics; M. M. OBERI ,etal 1974

6.3- Recommended Books
thermodynamics, kinetic theory and statistical
thermodynamics Francis W. Sears, et al 1977
heat and thermodynamics M.W. Zemansky 1984
6.4- Periodicals, Web Sites, ... etc
7- Facilities Required for Teaching and Learning
Data show – computer – books – internet,....etc.

Course Coordinator: Prof.Dr.Ibrahem Zaki Hager Head of Department: Prof.Dr. Sana Maize Date: / /